Аминокислоты имеют свойства кислот оснований. Аминокислоты — номенклатура, получение, химические свойства

Химические свойства а-аминокислот определяются, в самом общем случае, наличием у одного и того же атома углерода карбоксильной и аминной групп. Специфика боковых функциональных групп аминокислот определяет различия в их реакционной способности и индивидуальности каждой аминокислоты. Свойства боковых функциональных групп выходят на первый план в молекулах полипептидов и белков, т.е. после того, как аминная и карбоксильная группа свое дело сделали - образовали полиамидную цепочку.

Итак, химические свойства собственно аминокислотного фрагмента подразделяются на реакции аминов, реакции карбоновых кислот и свойства, обязанные взаимному их влиянию.

Карбоксильная группа проявляет себя в реакциях со щелочами - образуя карбоксилаты, со спиртами - образуя сложные эфиры, с аммиаком и аминами - образуя амиды кислот, а-аминокислоты достаточно легко декарбоксилируются при нагревании и при действии ферментов (схема 4.2.1).

Эта реакция имеет важное физиологическое значение, поскольку ее реализация in vivo приводит к образованию соответствующих биогенных аминов, выполняющих ряд специфических функций в живых организмах. При декарбоксилировании гистидина образуется гистамин, обладающий гормональным действием. В организме человека он находится в связанном виде, освобождается при воспалительных и аллергических реакциях, анафилактическом шоке, вызывает расширение капилляров, сокращение гладкой мускулатуры, резко повышает секрецию соляной кислоты в желудке.

Так же, реакцией декарбоксилирования, вместе с реакцией гидроксилирования ароматического цикла, из триптофана образуется другой биогенный амин - серотонин. Он содержится у человека в клетках кишечника в тромбоцитах, в ядах кишечнополостных, моллюсков, членистоногих и земноводных, встречается в растениях (бананах, кофе, облепихе). Серотонин выполняет медиаторные функции в центральной и периферической нервной системах, влияет на тонус кровеносных сосудов, повышает стойкость капилляров, увеличивает количество тромбоцитов в крови (схема 4.2.2).

Аминогруппа аминокислот проявляет себя в реакциях с кислотами, образуя аммонийные соли, ацилируется

Схема 4.2.1

Схема 4.2.2

и алкилируется при взаимодействии с галогенангидридами и галогеналкилами, с альдегидами образует основания Шиффа, а с азотистой кислотой, как и обычные первичные амины, образует соответствующие гидроксипроизводные, в данном случае оксикислоты (схема 4.2.3).

Схема 4.2.3

Одновременное участие аминогруппы и карбоксильной функции в химических реакциях достаточно разнообразно. а-Аминокислоты образуют комплексы с ионами многих двухвалентных металлов - эти комплексы построены с участием двух молекул аминокислот на один ион металла, при этом металл образует с лигандами связи двух типов: карбоксильная группа дает с металлом ионную связь, а аминогруппа участвует своей неподеленной электронной парой, координирующейся на свободные орбитали металла (донорно-акцепторная связь), давая так называемые хелатные комплексы (схема 4.2.4, металлы расположены в ряд по устойчивости комплексов).

Так как в молекуле аминокислоты присутствует одновременно и кислотная и основная функция, то безусловно взаимодействие между ними неминуемо - оно приводит к образованию внутренней соли (цвиттер-иона). Так как это соль слабой кислоты и слабого основания, то в водном растворе она будет легко гидролизоваться, т.е. система равновесная. В кристаллическом состоянии аминокислоты имеют чисто цвиттер-ионную структуру, отсюда высокие этих веществ (схема 4.2.5).

Схема 4.2.4

Схема 4.2.5

Нингидринная реакция имеет большое значение для обнаружения аминокислот при их качественном и количественном анализе. Большинство аминокислот реагирует с нингидрином, выделяя соответствующий альдегид, при этом раствор окрашивается в интенсивный сине-фиолетовый цвет ( нм), растворы оранжевого цвета ( нм) дают только пролин и оксипролин. Схема реакции достаточно сложна и ее промежуточные стадии не совсем ясны, окрашенный продукт реакции носит название “фиолетовый Руэмана" (схема 4.2.6).

Дикетопиперазины образуются при нагревании свободных аминокислот, а лучше при нагревании их эфиров.

Схема 4.2.6

Продукт реакции можно определить по структуре - как производное гетероцикла пиразина, по схеме реакции - как циклический двойной амид, поскольку образуется он взаимодействием аминогрупп с карбоксильными функциями по схеме нуклеофильного замещения (схема 4.2.7).

Образование полиамидов а-аминокислот является разновидностью вышеописанной реакции образования дикепиперазинов, причем той

Схема 4.2.7

Схема 4.2.8

разновидностью, ради которой наверное Природа и создала этот класс соединений. Суть реакции заключается в нуклеофильной атаке аминной группы одной а-аминокислоты по карбоксильной группе второй а-аминокислоты, тогда как аминная группа второй аминокислоты последовательно атакует карбоксильную группу третьей аминокислоты и т.д. (схема 4.2.8).

Результатом реакции является полиамид или (называемый применительно к химии белков и белковоподобных соединений) полипептид. Соответственно фрагмент -CO-NH- называют пептидным звеном или пептидной связью.

Аминокислоты — это органические амфотерные соединения. Они содержат в составе молекулы две функциональные группы противоположного характера: амино­группу с основными свойствами и карбоксильную группу с кис­лотными свойствами. Аминокислоты реагируют как с кислотами, так и с основаниями:

Н 2 N -СН 2 -СООН + HCl → Сl [Н 3 N-СН 2 -СООН],

Н 2 N -СН 2 -СООН + NaOH → H 2 N-CH 2 -COONa + Н 2 О.

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к ами­ногруппе. При этом образуется внутренняя соль, молекула кото­рой представляет собой биполярный ион:

H 2 N-CH 2 -СООН + Н 3 N -СН 2 -СОO — .

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей общей схемой:

Водные растворы аминокислот имеют нейтральную, щелоч­ную или кислую среду в зависимости от количества функцио­нальных групп. Так, глутаминовая кислота образует кислый рас­твор (две группы -СООН, одна -NH 2), лизин — щелочной (одна группа -СООН, две -NH 2).

Подобно первичным аминам, аминокислоты реагируют с азо­тистой кислотой, при этом аминогруппа превращается в гидроксогруппу, а аминокислота - в гидроксикислоту:

H 2 N-CH(R)-COOH + HNO 2 → HO-CH(R)-COOH + N 2 + H 2 O

Измерение объема выделившегося азота позволяет определить количество аминокислоты (метод Ван-Слайка ).

Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир (точнее, в хлороводородную соль эфира):

H 2 N-CH(R)-COOH + R’OH H 2 N-CH(R)-COOR’ + Н 2 О.

Сложные эфиры аминокислот не имеют биполярной структу­ры и являются летучими соединениями.

Важнейшее свойство аминокислот - их способность к кон­денсации с образованием пептидов.

Качественные реакции .

1) Все аминокислоты окисляются нингидрином

с образованием продуктов, окрашенных в сине-фиолетовый цвет. Иминокислота пролин дает с нингидрином желтое окрашивание. Эта реакция может быть использована для количественного опре­деления аминокислот спектрофотометрическим методом.

2) При нагревании ароматических аминокислот с концентри­рованной азотной кислотой происходит нитрование бензольного кольца и образуются соединения, окрашенные в желтый цвет. Эта реакция называется ксантопротеиновой (от греч. ксантос - жел­тый).

Аминокислоты проявляют свойства и кислот, и аминов. Так, они образуют соли (за счет кислотных свойств карбоксильной группы):

NH 2 CH 2 COOH + NaOH (NH 2 CH 2 COO)Na + Н 2 О

глицин глицинат натрия

и сложные эфиры (подобно другим органическим кислотам):

NH 2 CH 2 COOH + С 2 Н 5 ОНNH 2 CH 2 C(O)OC 2 H 5 + Н 2 О

глицин этилглицинат

С более сильными кислотами аминокислоты проявляют свойства оснований и образуют соли за счет основных свойств аминогруппы:

глицин хлорид глициния

Простейший белок - полипептид, содержащий в своей структуре не менее 70 аминокислотных остатков и имеющий молекулярную массу свыше 10 000 Да (дальтон). Дальтон - единица измерения массы белков, 1 дальтон равен 1,66054·10 -27 кг (углеродная единица массы). Аналогичные соединения, состоящие из меньшего количества аминокислотных остатков, относят к пептидам. Пептидами по своей природе являются некоторые гормоны – инсулин, окситоцин, вазопрессин. Некоторые пептиды являются регуляторами иммунитета. Пептидную природу имеют некоторые антибиотики (циклоспорин А, грамицидины А, В, С и S), алкалоиды, токсины пчел и ос, змей, ядовитых грибов (фаллоидин и аманитин бледной поганки), холерный и ботулинический токсины и др.

Уровни структурной организации белковых молекул .

Молекула белка имеет сложное строение. Выделяют несколько уровней структурной организации белковой молекулы – первичную, вторичную, третичную и четвертичную структуры.

Первичная структура определяется как линейная последовательность остатков протеиногенных аминокислот, связанных пептидными связями (Рис.5):

Рис.5. Первичная структура молекулы белка

Первичная структура молекулы белка генетически детерминирована для каждого конкретного белка в последовательности нуклеотидов информационной РНК. Первичная структура определяет и более высокие уровни организации белковых молекул.

Вторичная структура - конформация (т. е. расположение в пространстве) отдельных участков белковой молекулы. Вторичная структура в белках может быть представлена -спиралью, -структурой (структура складчатого листа) (Рис.6).

Рис.6. Вторичная структура белка

Вторичную структуру белка поддерживают водородные связи между пептидными группировками.

Третичная структура - конформация всей молекулы белка, т.е. укладка в пространстве всей полипептидной цепи, включая укладку боковых радикалов. Для значительного числа белков методом рентгеноструктурного анализа получены координаты всех атомов белка, за исключением координат атомов водорода. В формировании и стабилизации третичной структуры принимают участие все виды взаимодействий: гидрофобное, электростатическое (ионное), дисульфидные ковалентные связи, водородные связи. В этих взаимодействиях участвуют радикалы аминокислотных остатков. Среди связей, удерживающих третичную структуру следует отметить: а) дисульфидный мостик (- S - S -); б) сложноэфирный мостик (между карбоксильной группой и гидроксильной группой); в) солевой мостик (между карбоксильной группой и аминогруппой); г) водородные связи.

В соответствии с формой белковой молекулы, обусловленной третичной структурой, выделяют следующие группы белков

1) Глобулярные белки , которые имеют форму глобулы (сферы). К таким белкам относится, например, миоглобин, имеющий 5 α -спиральных сегментов и ни одной β – складки, иммуноглобулины, у которых нет α -спирали, основными элементами вторичной структуры являются β –складки

2) Фибриллярные белки . Эти белки имеют вытянутую нитевидную форму, они выполняют в организме структурную функцию. В первичной структуреони имеют повторяющиеся участки и формируют достаточно однотипную для всей полипептидной цепивторичную структуру. Так, белок α - кератин (основной белковый компонент ногтей, волос, кожи) построен из протяженных α - спиралей. Существуют менее распространенные элементы вторичной структуры, например - полипептидные цепи коллагена, образующие левые спирали с параметрами, резко отличающимися от параметров α -спиралей. В коллагеновых волокнах три спиральные полипептидные цепи скручены в единую правую суперспираль (Рис.7):

Рис.7 Третичная структура коллагена

Четвертичная структура белка. Под четвертичной структурой белков подразумевают способ укладки в пространстве отдельных полипептидных цепей (одинаковых или разных) с третичной структурой, приводящий к формированию единого в структурном и функциональном отношениях макромолекулярного образования (мультимера). Четвертичную структуру имеют не все белки. Примером белка, имеющего четвертичную структуру, является гемоглобин, который состоит из 4-х субъединиц. Этот белок участвует в транспорте газов в организме.

При разрыве дисульфидных и слабых типов связей в молекулах все структуры белка, кроме первичной, разрушаются (полностью или частично), при этом белок теряет свои нативные свойства (свойства белковой молекулы, присущие ей в естественном, природном (нативном) состоянии). Данный процесс называется денатурация белка . К факторам, вызывающим денатурацию белка относят высокие температуры, ультрафиолетовое облучение, концентрированные кислоты и щелочи, соли тяжелых металлов и другие.

Белки подразделяются на простые (протеины), состоящие только из аминокислот, и сложные (протеиды), содержащие, кроме аминокислот, другие небелковые вещества, например, углеводы, липиды, нуклеиновые кислоты. Небелковая часть сложного белка называется простетической группой.

Простые белки , состоящие только из остатков аминокислот, широко распространены в животном и растительном мире. В настоящее время не существует четкой классификации данных соединений.

Гистоны

Имеют сравнительно низкую молекулярную массу (12-13 тыс.), с преобладанием щелочных свойств. Локализованы в основном в ядрах клеток, растворимы в слабых кислотах, осаждаются аммиаком и спиртом. Имеют только третичную структуру. В естественных условиях прочно связаны с ДНК и входят в состав нуклеопротеидов. Основная функция - регуляция передачи генетической информации с ДНК и РНК (возможна блокировка передачи).

Протамины

Эти белки имеют самую низкую молекулярную массу (до 12 тыс.). Проявляет выраженные основные свойства. Хорошо растворимы в воде и слабых кислотах. Содержатся в половых клетках и составляют основную массу белка хроматина. Как и гистоны образуют комплекс с ДНК, придают ДНК химическую устойчивость, но в отличие от гистонов, .не выполняют регуляторной функции.

Глютелины

Растительные белки, содержащиеся в клейковине семян злаковых и некоторых других культур, в зеленых частях растений. Не растворимы в воде, растворах солей и этанола, но хорошо растворимы в слабых растворах щелочей. Содержат все незаменимые аминокислоты, являются полноценными продуктами питания.

Проламины

Растительные белки. Содержатся в клейковине злаковых растений. Растворимы только в 70%-м спирте (это объясняется высоким содержанием в этих белках пролина и неполярных аминокислот).

Протеиноиды.

К протеиноидам относятся белки опорных тканей (кость, хрящ, связки, сухожилия, ногти, волосы), для них характерно высокое содержание серы. Эти белки нерастворимы или трудно растворимы в воде, солевых и водно-спиртовых смесях..К протеиноидам относятся кератин, коллаген, фиброин.

Альбумины

Это кислые белки невысокой молекулярной массы (15-17 тыс.), растворимы в воде и слабых солевых растворах. Осаждаются нейтральными солями при 100%-м насыщении. Участвуют в поддержании осмотического давления крови, транспортируют с кровью различные вещества. Содержатся в сыворотке крови, молоке, яичном белке.

Глобулины

Молекулярная масса до 100 тыс. В воде нерастворимы, но растворимы в слабых солевых растворах и осаждаются в менее концентрированных растворах (уже при 50%-м насыщении). Содержатся в семенах растений, особенно в бобовых и масленичных; в плазме крови и в некоторых других биологических жидкостях. Выполняют функцию иммунной защиты, обеспечивают устойчивость организма к вирусным инфекционным заболеваниям.

Аминокислоты - главный строительный материал любого живого организма. По своей природе они являются первичными азотистыми веществами растений, которые синтезируются из почвы. Строение и и аминокислот зависят от их состава.

Структура аминокислоты

Каждая ее молекула имеет карбоксильные и аминные группы, которые соединены с радикалом. Если аминокислота содержит 1 карбоксильную и 1 амино-группу, строение ее можно обозначить формулой, представленной ниже.

Аминокислоты, которые имеют 1 кислотную и 1 щелочную группу, называют моноаминомонокарбоновыми. В организмах также синтезируются и функции которых обусловливают 2 карбоксильных группы или 2 аминных группы. Аминокислоты, содержащие 2 карбоксильные и 1 аминную группы, называют моноаминодикарбоновыми, а имеющие 2 аминные и 1 карбоксильную - диаминомонокарбоновыми.

Также они различны по строению органического радикала R. У каждой из них имеется свое наименование и структура. Отсюда и различные функции аминокислот. Именно наличие кислотной и щелочной групп обеспечивает ее высокую реактивность. Эти группы соединяют аминокислоты и образуют полимер - белок. Белки еще именуются полипептидами из-за своего строения.

Аминокислоты как строительный материал

Молекула белка - это цепочка из десятков или сотен аминокислот. Белки отличаются по составу, количеству и порядку расположения аминокислот, ведь число сочетаний из 20 составляющих практически бесконечно. Одни из них имеют весь состав незаменимых аминокислот, иные обходятся без одной или нескольких. Отдельные аминокислоты, структура, функции которых подобны белкам человеческого тела, не применяются в качестве пищевых, так как малорастворимы и не расщепляются ЖКТ. К таким принадлежат белки ногтей, волос, шерсти или перьев.

Функции аминокислот трудно переоценить. Эти вещества выступают главной пищей в рационе людей. Какую функцию выполняют аминокислоты? Они увеличивают рост мышечной массы, помогают укреплению суставов и связок, восстанавливают поврежденные ткани организма и участвуют во всех процессах, происходящих в теле человека.

Незаменимые аминокислоты

Только из добавок или пищевых продуктов можно получить Функции в процессе формирования здоровых суставов, крепких мышц, красивых волос очень значимы. К таким аминокислотам относятся:

  • фенилаланин;
  • лизин;
  • треонин;
  • метионин;
  • валин;
  • лейцин;
  • триптофан;
  • гистидин;
  • изолейцин.

Функции аминокислот незаменимых

Эти кирпичики выполняют важнейшие функции в работе каждой клетки человеческого организма. Они незаметны, пока поступают в организм в достаточном количестве, но их недостаток существенно ухудшает работу всего организма.

  1. Валин возобновляет мышцы, служит отличным источником энергии.
  2. Гистидин улучшает состав крови, способствует восстановлению и росту мышц, улучшает работу суставов.
  3. Изолейцин помогает выработке гемоглобина. Контролирует количество сахара в крови, повышает энергичность человека, выносливость.
  4. Лейцин укрепляет иммунитет, следит за уровнем сахара и лейкоцитов в крови. Если уровень лейкоцитов завышен: он их понижает и подключает резервы организма для ликвидации воспаления.
  5. Лизин помогает усвоению кальция, что формирует и укрепляет кости. Помогает выработке коллагена, улучшает структуру волос. Для мужчин это отличный анаболик, так как он наращивает мышцы и увеличивает мужскую силу.
  6. Метионин нормализует работу пищеварительной системы и печени. Участвует в расщеплении жиров, убирает токсикоз у беременных, благотворно влияет на волосы.
  7. Треонин улучшает работу ЖКТ. Повышает иммунитет, участвует в создании эластина и коллагена. Треонин препятствует отложению жира в печени.
  8. Триптофан отвечает за эмоции человека. Вырабатывает серотонин - гормон счастья, тем самым нормализует сон, поднимает настроение. Укрощает аппетит, благотворительно влияет на сердечную мышцу и артерии.
  9. Фенилаланин служит передатчиком сигналов от нервных клеток в мозг головы. Улучшает настроение, подавляет нездоровый аппетит, улучшает память, повышает восприимчивость, снижает боль.

Дефицит незаменимых аминокислот приводит к остановке роста, нарушению обмена веществ, снижению мышечной массы.

Заменимые аминокислоты

Это такие аминокислоты, строение и функции которых вырабатываются в организме:

  • аргинин;
  • аланин;
  • аспарагин;
  • глицин;
  • пролин;
  • таурин;
  • тирозин;
  • глутамат;
  • серин;
  • глутамин;
  • орнитин;
  • цистеин;
  • карнитин.

Функции аминокислот заменимых

  1. Цистеин ликвидирует токсические вещества, участвует в создании тканей кожи и мышц, представляет собой естественный антиоксидант.
  2. Тирозин снижает физическую усталость, ускоряет метаболизм, ликвидирует стресс и депрессию.
  3. Аланин служит для роста мускулатуры, является источником энергии.
  4. увеличивает метаболизм и снижает образование аммиака при больших нагрузках.
  5. Цистин устраняет боль при травмировании связок и суставов.
  6. отвечает за мозговую активность, во время длительных физических нагрузок переходит в глюкозу, вырабатывая энергию.
  7. Глутамин восстанавливает мышцы, повышает иммунитет, ускоряет метаболизм, усиливает работу мозга и создает гормон роста.
  8. Глицин необходим для работы мышц, расщепления жира, стабилизации артериального давления и сахара в крови.
  9. Карнитин перемещает жировые кислоты в клетки, где совершается их расщепление с выделением энергии, в результате чего сжигается лишний жир и генерируется энергия.
  10. Орнитин производит гормон роста, участвует в процессе мочеобразования, расщепляет жирные кислоты, помогает выработке инсулина.
  11. Пролин обеспечивает производство коллагена, он необходим для связок и суставов.
  12. Серин повышает иммунитет и вырабатывает энергию, нужен для быстрого метаболизма жирных кислот и роста мышц.
  13. Таурин расщепляет жир, поднимает сопротивляемость организма, синтезирует желчные соли.

Белок и его свойства

Белки, или протеины - высокомолекулярные соединения с содержанием азота. Понятие "протеин", впервые обозначенное Берцелиусом в 1838 г., происходит от греческого слова и означает "первичный", что отображает лидирующее значение протеинов в природе. Разновидность белков дает возможность для существования огромного количества живых существ: от бактерий до человеческого организма. Их существенно больше, чем других макромолекул, ведь белки - это фундамент живой клетки. Составляют приблизительно 20% от массы человеческого тела, больше 50% сухой массы клетки. Такое количество разнообразных белков объясняется свойствами двадцати различных аминокислот, которые взаимодействуют друг с другом и создают полимерные молекулы.

Выдающееся свойство белков - способность к самостоятельному созданию определенной, свойственной конкретному белку пространственной структуры. По белки - это биополимеры с пептидными связями. Для химического состава белков свойственно постоянное среднее содержание азота - приблизительно 16%.

Жизнь, а также рост и развитие организма невозможны без функции белковых аминокислот строить новые клетки. Белки нельзя заменить прочими элементами, их роль в человеческом организме является чрезвычайно важной.

Функции белков

Необходимость белков заключается в таких функциях:

  • он необходим для роста и развития, так как выступает главным строительным материалом для создания новых клеток;
  • управляет метаболизмом, во время которого освобождается энергия. После принятия пищи скорость метаболизма увеличивается, например, если еда состоит из углеводов, метаболизм ускоряется на 4%, если из белков - на 30%;
  • регулируют в организме, благодаря своей гидрофильности - способности притягивать воду;
  • усиливают работу иммунной системы, синтезируя антитела, которые защищают от инфекции и ликвидируют угрозу заболевания.

Продукты - источники белков

Мышцы и скелет человека состоят из живых тканей, которые на протяжении жизни не только функционируют, но и обновляются. Восстанавливаются после повреждений, сохраняют свою силу и прочность. Для этого им требуются вполне определенные питательные вещества. Пища обеспечивает организм энергией, необходимой для всех процессов, включая работу мышц, рост и восстановление тканей. А белок в организме используется и как источник энергии, и как стройматериал.

Поэтому очень важно соблюдать его ежедневное использование в пищу. Богатые белком продукты: курица, индейка, постная ветчина, свинина, говядина, рыба, креветки, фасоль, чечевица, бекон, яйца, орех. Все эти продукты обеспечивают организм белком и дают энергию, необходимую для жизни.

Аминокислоты – соединения, которые содержат в молекуле одновременно аминогруппу и карбоксильную группу. Простейшим представителем аминокислот является аминоуксусная (глицин) кислота: NH 2 -CH 2 -COOH

Так как аминокислоты содержат две функциональные группы, то и свойства их зависят от этих групп атомов: NH 2 - и –CООН. Аминокислоты – амфотерные органические вещества, реагирующие как основание и как кислота.

Физические свойства.

Аминокислоты представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде и малорастворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус.

Химические свойства

Кислоты (проявляются основные свойства)

Основания

+оксиды металлов

Аминокислоты – образование пептидов

Аминокислоты не изменяют окраску индикатора, если количество аминогрупп и карбоксильных групп одинаково.

1) NH 2 -CH 2 -COOH + НCl → NH 3 Cl-CH 2 -COOH

2) NH 2 -CH 2 -COOH + NaOH → NH 2 -CH 2 -COONa + H 2 O

3) NH 2 -CH 2 -COOH + NH 2 -CH 2 -COOH → NH 2 -CH 2 -CO NH-CH 2 -COOH + H 2 O

Биологическая роль аминокислот заключается в том, что из их остатков образуется первичная структура белка. Существует 20 аминокислот, которые являются исходными веществами для производства белков в нашем организме. Некоторые аминокислоты применяются в качестве лечебных средств, например глутаминовую кислоту - при нервных заболеваниях, гистидин – при язве желудка. Некоторые аминокислоты находят применение в пищевой промышленности, их добавляют в консервы и пищевые концентраты для улучшения пищи.

Билет № 16

Анилин – представитель аминов. Химическое строение и свойства, получение и практическое применение.

Амины - это органические соединения, представляющие собой производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал.

Общая формула:

Физические свойства.

Анилин- бесцветная маслянистая жидкость со слабым характерным запахом, малорастворим в воде, но хорошо растворим в спирте, эфире, бензоле. Температура кипения 184°C. Анилин- сильный яд, действует на кровь .

Химические свойства.

Кислоты (реакции по аминогруппе)

Br 2 (водный раствор)

C 6 H 5 NН 2 + НCl → C 6 H 5 NН 3 Cl

Химические свойства анилина обусловлены наличием в его молекуле аминогруппы -NH 2 и бензольного ядра, которые оказывают взаимное влияние друг на друга.

Получение.

Восстановление нитросоединений – реакция Зинина

C 6 H 5 NО 2 + Н 2 → C 6 H 5 NН 2 + Н 2 О

Применение.

Анилин применяется в производстве фотоматериалов, анилиновых красителей. Получают полимеры, взрывчатые вещества, лекарственные препараты.

Билет № 17

Белки - как биополимеры. Строение, свойства и биологические функции белков.

Белки (протеины , полипептиды ) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот.

Структура белка

Молекулы белков представляют собой линейные полимеры, состоящие из α -аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот. Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка.

· Первичная структура - последовательность аминокислот в полипептидной цепи-линейно.

· Вторичная структура - закручивание полипептидной цепи в спираль, поддерживающееся водородными связями.

· Третичная структура -упаковка вторичной спирали в клубок. Поддерживают третичную структуру: дисульфидные связи, водородные связи.

Свойства

Белки являются амфотерными веществами, также как и аминокислоты.

Отличаются по степени растворимости в воде, но большинство белков в ней растворяются.

Денатурация: Резкое изменение условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка. Денатурация в некоторых случаях обратима.

Гидролиз: Под воздействием ферментов происходит гидрол белка до составляющих его аминокислот. Этот процесс происходит, например, в желудке человека под воздействием таких ферментов как пепсина и трипсина.

Функции белков в организме


Каталитическая функция

Ферменты - группа белков, обладающая специфическими каталитическими свойствами. Среди ферментов можно отметить такие белки: трипсин, пепсин, амилаза, липаза.

Структурная функция

Белки – это строительный материал почти всех тканей: мышечных, опорных, покровных.

Защитная функция

Белки антитела, способные обезвреживать вирусы, болезнетворные бактерии.

Сигнальная функция

Белки-рецепторы воспринимают и передают сигналы, поступившие от соседних клеток.

Транспортная функция

Гемоглобин переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким.

Запасающая функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных. Они служат строительным материалом.

Двигательная функция

Белки, осуществляющие сократительную деятельность это актин и миозин


Билет №18

1. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения (на примере полиэтилена).

Высокомолекулярные соединения (полимеры ) – это вещества, макромолекулы которых состоят из многократно повторяющихся звеньев. Их относительная молекулярная масса может измеряться от нескольких тысяч до многих миллионов.

Мономер – это низкомолекулярное вещество из которого получают полимер.

Структурное звено – многократно повторяющиеся в макромолекуле полимера группы атомов.

Степень полимеризации – количество повторяющихся структурных звеньев.

nСН 2 =СН 2 → (-СН 2 -СН 2 -) n


Полимеры могут быть получены в результате реакций полимеризации и поликонденсации.

Признаки реакции полимеризации :

1. Не образуется побочных веществ.

2. Реакция идет за счет двойных или тройных связей.

nСН 2 =СН 2 → (-СН 2 -СН 2 -) n – реакция полимеризации этилена - образование полиэтилена.

Признаки реакции поликонденсации :

1. Образуются побочные вещества.

2. Реакция идет за счет функциональных групп.

Пример: образование фенолформальдегидной смолы из фенола и формальдегида, полипептидной связи из аминокислот. При этом образуется кроме полимера побочный продукт – вода.

Высокомолекулярные соединения имеют определенные преимущества перед другими материалами: они устойчивы к действию реагентов, не проводят ток, механически прочные, легкие. На основе полимеров получают пленки, лаки, резину, пластмассы.