Изготовление из диэлектрика тело называется. Диэлектрические тела

электризация тел.

2. Электризация тел.

Эти явления были обнаружены еще в глубокой древности. Древнегреческие ученые заметили, что янтарь (окаменевшая смола хвойных деревьев, которые росли на Земле много сотен тысяч лет назад) при натирании его шерстью начинает притягивать к себе различные тела. По-гречески янтарь - электрон, отсюда произошло название “электричество”.

Про тело, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано или что ему сообщен электрический заряд.

Электризоваться могут тела, сделанные из разных веществ. Легко наэлектризовать натиранием о шерсть палочки из резины, серы, эбонита, пластмассы, капрона.

Электризация тел происходит при соприкосновении и последующем разделении тел. Трут тела друг о друга лишь для того, чтобы увеличить площадь их соприкосновения.

В электризации всегда участвуют два тела: в рассмотренных выше опытах стеклянная палочка соприкасалась с листом бумаги, кусочек янтаря - с мехом или шерстью, палочка из плексигласа - с шелком. При этом электризуются оба тела. Например, при соприкосновении стеклянной палочки и куска резины электризуются и стекло, и резина. Резина, как и стекло начинает притягивать к себе легкие тела.

Электрический заряд можно передать от одного тела к другому. Для этого нужно коснуться наэлектризованным телом другого тела, и тогда часть электрического заряда перейдет на него. Чтобы убедиться, что и второе тело наэлектризовано, нужно поднести к нему мелкие листочки бумаги и посмотреть, будут ли они притягиваться.

3. Два рода зарядов. Взаимодействие заряженных тел.

Все электризованные тела притягивают к себе другие тела, например листочки бумаги. По притяжению тел нельзя отличить электрический заряд стеклянной палочки, потертой о шелк, от заряда, полученного на эбонитовой палочке, потертая о них. Ведь обе наэлектризованные палочки притягивают листочки бумаги.

Означает ли это, что заряды, полученные на телах, сделанных из различных веществ, ничем не отличаются друг от друга?

Обратимся к опытам. Наэлектризуем эбонитовую палочку, подвешенную на нити. Приблизим к ней другую такую же палочку, наэлектризованную трением о тот же кусочек меха. Палочки оттолкнуться Так как палочки одинаковые и наэлектризовали их трением об одно и тоже тело, можно сказать, что на них были заряды одного рода. Значит, тела, имеющие заряды одного рода, взаимно отталкиваются.

Теперь поднесем к наэлектризованной эбонитовой палочке стеклянную палочку, потертую о шелк. Мы увидим, что стеклянная и эбонитовая палочки взаимно притягиваются (рис.№2). Следовательно, заряд, полученный на стекле, потертом о шелк, другого рода, чем на эбоните, потертом о мех. Значит, существует другой род электрических зарядов.

Будим приближать к подвешенной наэлектризованной эбонитовой палочке наэлектризованные тела из различных веществ: резины, плексигласа, пластмассы, капрона. Мы увидим, что в одних случаях эбонитовая палочка отталкивается от тел, поднесенных к ней, а в других - притягивается. Если эбонитовая палочка оттолкнулась, значит, на теле, поднесенном к ней, заряд такого же рода, что и на ней. А заряд тех тел, к которым эбонитовая палочка притянулась, сходен с зарядом, полученном на стекле, потертом о шелк. Поэтому можно считать, что существует только два рода электрических зарядов.

Заряд, полученный на стекле потертом о шелк (и на всех телах, где получается заряд такого же рода), назвали положительным, а заряд, полученный на янтаре (а также эбоните, сере, резине), потертом о шерсть назвали отрицательным, т. е. зарядам приписали знаки “+” и “-”.

И так, опыты показали, что существует два рода электрических зарядов - положительные и отрицательные заряды и что наэлектризованные тела по-разному взаимодействуют друг с другом.

Тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.

4. Электроскоп. Проводники и не проводники электричества.

Если тела наэлектризованы, то они притягиваются друг к другу или взаимно отталкиваются. По притяжению или отталкиванию можно судить, сообщен ли телу электрический заряд. Поэтому и устройство прибора, при помощи которого выясняют, наэлектризовано ли тело, основано на взаимодействии заряженных тел. Этот прибор называется электроскопом (от греч. слов электрон и скопео - наблюдать, обнаруживать).

В электроскопе через пластмассовую пробку (рис.№3), вставленную в металлическую оправу, пропущен металлический стержень, на конце которого укреплены два листочка из тонкой бумаги. Оправа с обеих сторон закрыта стеклами.

Чем больше заряд электроскопа, тем больше сила отталкивания листочков и тем на больший угол они разойдутся. Значит, по изменению угла расхождение листочков электроскопа можно судить, увеличился или уменьшился его заряд.

Если прикоснуться к заряженному телу (например, к электроскопу) рукой, оно разрядиться. Электрические заряды перейдут на наше тело и через него могут уйти в землю. Разредиться заряженное тело и в том случае если соединить его с землей металлическим предметом, например железной или медной проволокой. Но если заряженное тело соединить с землей стеклянной или эбонитовой палочкой, то электрические заряды по ним не уйдут в землю. В этом случае заряженное тело не разрядится.

По способности проводить электрические заряды вещества условно делятся на проводники и непроводники электричества.

Все металлы, почва, растворы солей и кислот в воде - хорошие проводники электричества.

К непроводникам электричества, или диэлектрикам, относятся фарфор, эбонит, стекло, янтарь, резина, шелк, капрон, пластмассы, керосин, воздух (газы).

Тела, изготовленные из диэлектриков, называются изоляторами (от греч. слова изоляро - уединять).

5. Делимость электрического заряда. Электрон.

Зарядим металлический шар, прикрепленный к стержню электроскопа (рис. №4а). Соединим этот шар с металлическим проводником А, держа его за ручку В, изготовленную из диэлектрика, с другим точно таким же, но незаряженным шаром, находящемся на втором электроскопе. Половина заряда перейдет с первого шара на второй (рис. №4б). Значит, первоначальный заряд разрядился на две равные части.

Теперь разъединим шары и коснемся второго шара рукой. От этого он потеряет заряд - разрядиться. Присоединим его снова к первому шару, на котором осталась половина первоначального заряда. Оставшийся заряд снова разделиться на две равные части, и на первом шаре останется четвертая часть первоначального заряда.

Таким же образом можно получить одну восьмую, одну шестнадцатую часть заряда и т. д.

Таким образом, опыт показывает, что электрический заряд может иметь разное значение. Электрический заряд - физическая величина.

За единицу электрического заряда принят один кулон (обозначается 1 Кл). Единица названа так в честь французского физика Ш. Кулона.

В опыте изображенным на рисунке №4, показано, что электрический заряд можно разделить на части.

А существует ли придел деления заряда?

Чтобы ответить на этот вопрос, понадобилось выполнять более сложные и точные опыты, чем описанные выше, т. к. очень скоро оставшийся на шаре электроскопа заряд становиться таким малым, что обнаружить его при помощи электроскопа не удается.

Для деления заряда на очень маленькие порции нужно передавать его не шарам, а маленьким крупинкам металла или капелькам жидкости. Измеряя заряд, полученный на таких маленьких телах, установили, что можно получить порции заряда, в миллиарды миллиардов раз меньше, чем в описанном опыте. Однако во всех опытах разделить заряд дальше определенного значения не удавалось.

Это позволило предположить, что электрический заряд имеет придел делимости или, точнее, что существуют заряженные частица, которая имеет самый малый заряд, далее уже не делимый.

Чтобы доказать, что существует придел деления электрического заряда, и установить, каков этот придел, ученые проводили специальные опыты. Например, советский ученый А. Ф. Иоффе поставил опыт, в котором электризовали мелкие пылинки цинка, видимые только под микроскопом. Заряд пылинок несколько раз меняли, и каждый раз измеряли, на сколько изменился заряд. Опыты показали, что все изменения заряда пылинки были в целое число раз (т. е. в 2, 3, 4, 5 и т. д.)больше некоторого определенного наименьшего заряда, т. е. заряд пылинки изменялся хотя и очень малыми, но целыми порциями. Так как заряд с пылинки уходит вместе с частицей вещества, то Иоффе сделал вывод, что в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже не делимый.

Эту частицу назвали электрон.

Значение заряда электрона впервые определил американский ученый Р. Милликен. В своих опытах, сходных с опытами А. Ф. Иоффе, он пользовался мелкими капельками масла.

Заряд электрона - отрицательный, равен он - 1,610 Кл (0,000 000 000 000 000 000 16 Кл). Электрический заряд - одно из основных свойств электрона. Этот заряд нельзя “снять” с электрона.

Масса электрона равна 9,110 кг, она в 3700 раз меньше массы молекулы водорода, наименьшей из всех молекул. Крылышко мухи имеет массу, примерно в 510 большую, чем масса электрона.

6. Ядерная модель строения атома

Изучение строения атома практически началось в 1897-1898 гг., после того как была окончательно установлена природа катодных лучей как потока электронов и были определены величина заряда и масса электрона. Факт выделения электронов самыми разнообразными веществами приводил к выводу, что электроны входят в состав всех атомов. Но атом в целом электрически нейтрален, следовательно, он должен содержать в себе еще другую составную часть, заряженную положительно, причем ее заряд должен уравновешивать сумму отрицательных зарядов электронов.

Эта положительно заряженная часть атома была открыта в 1911 г. Эрнестом Резерфордом (1871-1937). Резерфорд предложил следующую схему строения атома. В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Суммарный отрицательный заряд электронов численно равен положительному заряду ядра, так что атом в целом электронейтрален. Так как масса электронов ничтожно мала, то почти вся масса атома сосредоточена в его ядре. Наоборот, размер ядер чрезвычайно мал даже по сравнению с размером самих атомов: диаметр атома - величина порядка 10 см, а диаметр ядра - порядка 10 - 10 см. Отсюда ясно, что на долю ядра и электронов, число которых, как увидим дальше, сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой (рис. №5)

Диэлектрик - это материал или вещество, которое практически не пропускает электрический ток. Такая проводимость получается вследствие небольшого количества электронов и ионов. Данные частицы образуются в не проводящем электрический ток материале только при достижении высоких температурных свойств. О том, что такое диэлектрик и пойдёт речь в этой статье.

Описание

Каждый электронный или радиотехнический проводник, полупроводник или заряженный диэлектрик пропускает через себя электрический ток, но особенность диэлектрика в том, что в нем даже при высоком напряжении свыше 550 В будет протекать ток малой величины. Электрический ток в диэлектрике - это движение заряженных частиц в определённом направлении (может быть положительным и отрицательным).

Виды токов

В основе электропроводимости диэлектриков лежат:

  • Токи абсорбционные - ток, который протекает в диэлектрике при постоянном токе до тех пор, пока не достигнет состояния равновесия, изменяя направление при включении и подаче на него напряжения и при отключении. При переменном токе напряжённость в диэлектрике будет присутствовать в нём всё время, пока находится в действии электрического поля.
  • Электронная электропроводность - перемещение электронов под действием поля.
  • Ионная электропроводность - представляет собой движение ионов. Находится в растворах электролитов - соли, кислоты, щёлочь, а так же во многих диэлектриках.
  • Молионная электропроводность - движение заряженных частиц, называемых молионами. Находится в коллоидных системах, эмульсиях и суспензиях. Явление движения молионов в электрическом поле называется электрофорезом.

Классифицируют по агрегатному состоянию и химической природе. Первые делятся на твёрдые, жидкостные, газообразные и затвердевающие. По химической природе делятся на органику, неорганику и элементоорганические материалы.

По агрегатному состоянию:

  • Электропроводимость газов. У газообразных веществ достаточно малая проводимость тока. Он может возникать при наличии свободных заряженных частиц, что появляется из-за воздействия внешних и внутренних, электронных и ионных факторов: излучение рентгена и радиоактивного вида, соударение молекул и заряженных частиц, тепловые факторы.
  • Электропроводимость жидкого диэлектрика. Факторы зависимости: структура молекулы, температура, примеси, присутствие крупных зарядов электронов и ионов. Электропроводимость жидких диэлектриков во многом зависит от наличия влаги и примесей. Проводимость электричества полярных веществ создаётся ещё при помощи жидкости с диссоциированными ионами. При сравнении полярных и неполярных жидкостей, явное преимущество в проводимости имеют первые. Если очистить жидкость от примесей, то это поспособствует уменьшению её проводимых свойств. При росте проводимости и его температуры возникает уменьшение её вязкости, приводящее к увеличению подвижности ионов.
  • Твёрдые диэлектрики. Их электропроводимость обуславливается как перемещение заряженных частиц диэлектрика и примесей. В сильных полях электрического тока выявляется электропроводимость.

Физические свойства диэлектриков

При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.

Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника. Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика. Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.

Применение

Использование не проводящих электрический ток материалов очень обширно, ведь это один из популярно используемых классов электротехнических компонентов. Стало достаточно ясно, что их можно применять благодаря свойствам в активном и пассивном виде.

В пассивном виде свойства диэлектриков используют для применения в электроизоляционном материале.

В активном виде они используются в сегнетоэлектрике, а также в материалах для излучателей лазерной техники.

Основные диэлектрики

К часто встречающимся видам относятся:

  • Стекло.
  • Резина.
  • Нефть.
  • Асфальт.
  • Фарфор.
  • Кварц.
  • Воздух.
  • Алмаз.
  • Чистая вода.
  • Пластмасса.

Что такое диэлектрик жидкий?

Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:

Нефтяные масла - являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: высоковольтные воды. - это неполярный диэлектрик. Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру. Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.

Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода. А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности. Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.

И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла - испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.

Заключение

В статье было подробно рассмотрено, что такое диэлектрик. Были упомянуты различные виды и их свойства. Конечно, чтобы понять всю тонкость их характеристик, придётся более углубленно изучить раздел физики о них.

ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

иначе изоляторы, т. е. тела, не проводящие электричества, не проводник.

Полный словарь иностранных слов, вошедших в употребление в русском языке.- Попов М. , 1907 .

ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

непроводящие электричество, изоляторы.

, 1907 .

ИЗОЛЯТОРЫ ИЛИ ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА

вообще все тела, дурно проводящие электричество и служащая для изолирования проводников; в частности же этим именем называются стеклянные или фарфоровые стаканы, употр. на телеграфной линии для изолирования проволоки в местах прикрепления её к столбам.

Словарь иностранных слов, вошедших в состав русского языка.- Павленков Ф. , 1907 .


Смотреть что такое "ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА" в других словарях:

    Название, данное Майклом Фарадеем телам, не проводящим, или, иначе, плохо проводящим электричество, как, напр., воздух, стекло, различные смолы, сера и т. д. Подобные тела называются также изоляторами. До исследований Фарадея, произведенных в 30… …

    Название, данное Михаилом Фарадеем телам непроводящимили, иначе, дурно проводящим электричество, как, напр., воздух, стекло,различные смолы, сера и т. д. Подобные тела называются такжеизоляторами. До исследований Фарадея, произведенных в 30 х… … Энциклопедия Брокгауза и Ефрона

    Дурные проводники электричества и потому употребляемые для изолирования проводников. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИЗОЛЯТОРЫ ИЛИ ДИЭЛЕКТРИЧЕСКИЕ ТЕЛА вообще все тела, дурно проводящие… … Словарь иностранных слов русского языка

    Вещества, плохо проводящие электрический ток. Термин «Д.» (от греч. diá через и англ. electric электрический) введён М. Фарадеем (См. Фарадей) для обозначения веществ, через которые проникают электрические поля. В любом веществе,… … Большая советская энциклопедия

    УЛЬТРАКОРОТКИЕ ВОЛНЫ - были впервые применены в терапии Шлипгаке (Schliephake). Переменные токи, применяемые в диатермии, характеризуются частотой от 800 000 до 1 млн. колебаний в секунду при длине волны в 300 400 м. В наст, время в терапию введены токи с частотой в 10 … Большая медицинская энциклопедия

    электрический - 3.45 электрический [электронный, программируемый электронный]; Е/Е/РЕ (electrical/electronic/ programmable electronic; Е/Е/РЕ) основанный на электрической и/или электронной, и/или программируемой электронной технологии. Источник … Словарь-справочник терминов нормативно-технической документации

    Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Один из отделов учения об электрических явлениях, заключающий в себе исследования распределения электричества, при условии равновесия его, на телах и определение тех электрических сил, какие возникают при этом. Основание Э. положили работы… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Классическая электродинамика … Википедия

    Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона … Википедия

Книги

  • Фундаментальные основы процессов химического осаждения пленок и структур для наноэлектроники , Коллектив авторов , В монографии представлены результаты развития процессов химического осаждения из газовой фазы металлических и диэлектрических пленок с использованием нетрадиционных летучих исходных… Категория: Техническая литература Серия: Интеграционные проекты СО РАН Издатель: ФГУП «Издательство СО РАН» , электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)
  • Физика твердого тела для инженеров Учебное пособие , Гуртов В. , Осауленко Р. , Учебное пособие представляет собой систематизированное и доступное изложение курса физики твердого тела, содержащее основные элементы физики конденсированногосостояния и ее приложения для… Категория:

6. Активные диэлектрики.

Диэлектрики, которые называются активными, это диэлектрики, свойства которых очень сильно изменяются под действием различных внешних факторов (фактор – движущая сила какого–либо процесса). Эти диэлектрики используются в разных устройствах для управления энергией или для преобразования поступающей информации (в ячейках памяти, радиоэлектрических аппаратах). В связи с этим требования к активным диэлектрикам имеют обратный характер: они должны очень сильно изменять свои свойства, электрические характеристики, при даже малых внешних воздействиях. Чем больше будет отклик на внешнее воздействие, тем будет лучше такой диэлектрик выполнять свои функции.
К активным диэлектрикам относятся сегнетоэлектрики, пьезоэлектрики, электреты
Сегнетоэлектрики – это диэлектрики, обладающие спонтанной (самопроизвольной) поляризацией, направление которой можно изменить с помощью внешнего электрического поля. Это так называемая доменная поляризация, когда направление векторов спонтанной поляризованности частиц в одном домене – одно, а разных доменов – разное. При воздействии внешнего электрического поля направление векторов спонтанной поляризации разных доменов начинает меняться в направлении внешнего электрического поля, но этот процесс переориентации векторов спонтанной поляризованности идёт в нелинейной зависимости от напряжённости электрического поля. Эта зависимость электрической индукции от напряжённости внешнего электрического поля по аналогии с магнитной индукцией называется диэлектрической петлёй гистерезиса .
Диэлектрическая проницаемость таких диэлектриков может достигать сверхвысоких значений – нескольких тысяч единиц. Однако диэлектрическая проницаемость сегнетоэлектриков очень сильно зависит от температуры – обычно максимальной в некотором интервале температур и значительно меньше за пределами этого интервала. Такая сильная зависимость εr от температуры – существенный недостаток сегнетоэлектриков.
К сегнетоэлектрикам относятся сегнетова соль (эти диэлектрики названы по имени Сеньета – французского аптекаря, открывшего соль), титанат бария и сотни других веществ, обладающих разными типами химической связи, структурным строением и физическими свойствами. Из-за больших значений εr из сегнетоэлектриков изготавливают миниатюрные конденсаторы с разными электрическими свойствами, определяющими область применения.
Известны:
- тиконды – на основе титановой керамики (TiO2)
- вариконды - материалы с резковыраженными нелинейными свойствами, то есть сильной зависимостью εr от напряженности внешнего электрического поля) – изготавливают из них нелинейные конденсаторы, применяющиеся в счётно-решающих устройствах, в автоматике и радиотехнике.
Пьезоэлектрики – от греческого «давлю» - это диэлектрики, обладающие пьезоэлектри­ческим эффектом, то есть в результате воздействия давления или механического напряжения диэлектрик поляризуется и на его поверхности образуются электрические заряды. Эти заряды пропорциональны механическому напряжению, меняют знак вместе с ним и исчезают при его снятии. Каждый пьезоэлектрик является электромеханическим преобразователем. Используют пьезоэлектрики-монокристаллы (кварц, турмалин, сегнетова соль) и пьезоэлектрическую керамику (в основном на основе титаната бария). Применяются для электроакустических приборов, в ультразвуковой технике, в радиотехнических фильтрах, звукоснимающей и звукозаписывающей технике, в электронных датчиках давления.
Электретом называется тело из диэлектрика, длительно сохраняющее поляризацию и создающее в окружающем его пространстве электрическое поле после удаления внешнего электрического поля. Электрическое поле электрета может быть очень сильным. Различают несколько видов электретов (по способу получения):
- термоэлектреты (расплав охлаждают во внешнем электрическом поле)
- фотоэлектреты (одновременное воздействие света и электрического поля)
- короноэлектреты (в коронном разряде при пониженном давлении).
Изготавливают электреты из органических веществ (воски, сахара), неорганических (керамика) и щёлочно-галоидных кристаллов.
Электреты могут хранить электрическое поле годами, по быстро теряют свойства при повышении температуры и влажности.
Электреты – это источники постоянного электрического поля, используются в различных приборах: в электрофотографии, электретных микрофонах и телефонах, в элементах электронной памяти и др. Электреты могут быть получены практически из всех известных диэлектриков.
Пироэлектрики – у них меняется величина спонтанной поляризованности при изменении температуры. В отличие от сегнетоэлектриков направления их спонтанной поляризации нельзя изменить внешним электрическим полем. При изменении температуры спонтанная поляризованность меняется, и в электрической цепи появляется ток. Используются в тепловых датчиках.
Ряд сегнетоэлектриков обладает электрооптическим эффектом – у них под действием внешнего электрического поля меняется показатель преломления среды, что используется в лазерах [оптических квантовых генераторах – источниках оптического (когерентного) излучения с определённой длиной волны, с высокой степенью направленности] для модуляции (изменения) лазерного излучения. Кроме того, сегнетоэлектрики применяются для создания рабочего тела лазеров – ОКГ, излучающих свет неменяющейся длины волны. Конечно, это разные материалы.
Сегнетоэлектриков очень много, они обладают разнообразнейшими свойствами, благодаря чему их применение чрезвычайно разнообразно в современной технике.

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.
Все проводники обладают такими свойствами, как сопротивление и проводимость . Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R ).
Величина, обратная сопротивлению, называется проводимостью (G ).

G = 1/ R

То есть, проводимость это свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость . Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет бо льшую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

В отличие от проводников , в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся , в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы , изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру , все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить , что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив, являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Изоляторы также есть очень хорошие, просто хорошие и плохие. Связано это с тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.

Полупроводники

Существуют вещества , которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками . Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников , у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет с увеличением температуры, а сопротивление, как величина обратная проводимости - уменьшается.

При низких температурах сопротивление полупроводников, как видно из рис. 1 , стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника.

Рис. 1 . Зависимость сопротивлений проводников и полупроводников от температуры